3.2.50 \(\int \frac {a+b x^4}{c+d x^4} \, dx\) [150]

3.2.50.1 Optimal result
3.2.50.2 Mathematica [A] (verified)
3.2.50.3 Rubi [A] (verified)
3.2.50.4 Maple [C] (verified)
3.2.50.5 Fricas [C] (verification not implemented)
3.2.50.6 Sympy [A] (verification not implemented)
3.2.50.7 Maxima [A] (verification not implemented)
3.2.50.8 Giac [A] (verification not implemented)
3.2.50.9 Mupad [B] (verification not implemented)

3.2.50.1 Optimal result

Integrand size = 17, antiderivative size = 223 \[ \int \frac {a+b x^4}{c+d x^4} \, dx=\frac {b x}{d}+\frac {(b c-a d) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{d} x}{\sqrt [4]{c}}\right )}{2 \sqrt {2} c^{3/4} d^{5/4}}-\frac {(b c-a d) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{d} x}{\sqrt [4]{c}}\right )}{2 \sqrt {2} c^{3/4} d^{5/4}}+\frac {(b c-a d) \log \left (\sqrt {c}-\sqrt {2} \sqrt [4]{c} \sqrt [4]{d} x+\sqrt {d} x^2\right )}{4 \sqrt {2} c^{3/4} d^{5/4}}-\frac {(b c-a d) \log \left (\sqrt {c}+\sqrt {2} \sqrt [4]{c} \sqrt [4]{d} x+\sqrt {d} x^2\right )}{4 \sqrt {2} c^{3/4} d^{5/4}} \]

output
b*x/d-1/4*(-a*d+b*c)*arctan(-1+d^(1/4)*x*2^(1/2)/c^(1/4))/c^(3/4)/d^(5/4)* 
2^(1/2)-1/4*(-a*d+b*c)*arctan(1+d^(1/4)*x*2^(1/2)/c^(1/4))/c^(3/4)/d^(5/4) 
*2^(1/2)+1/8*(-a*d+b*c)*ln(-c^(1/4)*d^(1/4)*x*2^(1/2)+c^(1/2)+x^2*d^(1/2)) 
/c^(3/4)/d^(5/4)*2^(1/2)-1/8*(-a*d+b*c)*ln(c^(1/4)*d^(1/4)*x*2^(1/2)+c^(1/ 
2)+x^2*d^(1/2))/c^(3/4)/d^(5/4)*2^(1/2)
 
3.2.50.2 Mathematica [A] (verified)

Time = 0.13 (sec) , antiderivative size = 196, normalized size of antiderivative = 0.88 \[ \int \frac {a+b x^4}{c+d x^4} \, dx=\frac {8 b c^{3/4} \sqrt [4]{d} x+2 \sqrt {2} (b c-a d) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{d} x}{\sqrt [4]{c}}\right )-2 \sqrt {2} (b c-a d) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{d} x}{\sqrt [4]{c}}\right )+\sqrt {2} (b c-a d) \log \left (\sqrt {c}-\sqrt {2} \sqrt [4]{c} \sqrt [4]{d} x+\sqrt {d} x^2\right )-\sqrt {2} (b c-a d) \log \left (\sqrt {c}+\sqrt {2} \sqrt [4]{c} \sqrt [4]{d} x+\sqrt {d} x^2\right )}{8 c^{3/4} d^{5/4}} \]

input
Integrate[(a + b*x^4)/(c + d*x^4),x]
 
output
(8*b*c^(3/4)*d^(1/4)*x + 2*Sqrt[2]*(b*c - a*d)*ArcTan[1 - (Sqrt[2]*d^(1/4) 
*x)/c^(1/4)] - 2*Sqrt[2]*(b*c - a*d)*ArcTan[1 + (Sqrt[2]*d^(1/4)*x)/c^(1/4 
)] + Sqrt[2]*(b*c - a*d)*Log[Sqrt[c] - Sqrt[2]*c^(1/4)*d^(1/4)*x + Sqrt[d] 
*x^2] - Sqrt[2]*(b*c - a*d)*Log[Sqrt[c] + Sqrt[2]*c^(1/4)*d^(1/4)*x + Sqrt 
[d]*x^2])/(8*c^(3/4)*d^(5/4))
 
3.2.50.3 Rubi [A] (verified)

Time = 0.41 (sec) , antiderivative size = 220, normalized size of antiderivative = 0.99, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.529, Rules used = {913, 755, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b x^4}{c+d x^4} \, dx\)

\(\Big \downarrow \) 913

\(\displaystyle \frac {b x}{d}-\frac {(b c-a d) \int \frac {1}{d x^4+c}dx}{d}\)

\(\Big \downarrow \) 755

\(\displaystyle \frac {b x}{d}-\frac {(b c-a d) \left (\frac {\int \frac {\sqrt {c}-\sqrt {d} x^2}{d x^4+c}dx}{2 \sqrt {c}}+\frac {\int \frac {\sqrt {d} x^2+\sqrt {c}}{d x^4+c}dx}{2 \sqrt {c}}\right )}{d}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {b x}{d}-\frac {(b c-a d) \left (\frac {\frac {\int \frac {1}{x^2-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{d}}+\frac {\sqrt {c}}{\sqrt {d}}}dx}{2 \sqrt {d}}+\frac {\int \frac {1}{x^2+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{d}}+\frac {\sqrt {c}}{\sqrt {d}}}dx}{2 \sqrt {d}}}{2 \sqrt {c}}+\frac {\int \frac {\sqrt {c}-\sqrt {d} x^2}{d x^4+c}dx}{2 \sqrt {c}}\right )}{d}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {b x}{d}-\frac {(b c-a d) \left (\frac {\int \frac {\sqrt {c}-\sqrt {d} x^2}{d x^4+c}dx}{2 \sqrt {c}}+\frac {\frac {\int \frac {1}{-\left (1-\frac {\sqrt {2} \sqrt [4]{d} x}{\sqrt [4]{c}}\right )^2-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{d} x}{\sqrt [4]{c}}\right )}{\sqrt {2} \sqrt [4]{c} \sqrt [4]{d}}-\frac {\int \frac {1}{-\left (\frac {\sqrt {2} \sqrt [4]{d} x}{\sqrt [4]{c}}+1\right )^2-1}d\left (\frac {\sqrt {2} \sqrt [4]{d} x}{\sqrt [4]{c}}+1\right )}{\sqrt {2} \sqrt [4]{c} \sqrt [4]{d}}}{2 \sqrt {c}}\right )}{d}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {b x}{d}-\frac {(b c-a d) \left (\frac {\int \frac {\sqrt {c}-\sqrt {d} x^2}{d x^4+c}dx}{2 \sqrt {c}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{d} x}{\sqrt [4]{c}}+1\right )}{\sqrt {2} \sqrt [4]{c} \sqrt [4]{d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{d} x}{\sqrt [4]{c}}\right )}{\sqrt {2} \sqrt [4]{c} \sqrt [4]{d}}}{2 \sqrt {c}}\right )}{d}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {b x}{d}-\frac {(b c-a d) \left (\frac {-\frac {\int -\frac {\sqrt {2} \sqrt [4]{c}-2 \sqrt [4]{d} x}{\sqrt [4]{d} \left (x^2-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{d}}+\frac {\sqrt {c}}{\sqrt {d}}\right )}dx}{2 \sqrt {2} \sqrt [4]{c} \sqrt [4]{d}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{d} x+\sqrt [4]{c}\right )}{\sqrt [4]{d} \left (x^2+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{d}}+\frac {\sqrt {c}}{\sqrt {d}}\right )}dx}{2 \sqrt {2} \sqrt [4]{c} \sqrt [4]{d}}}{2 \sqrt {c}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{d} x}{\sqrt [4]{c}}+1\right )}{\sqrt {2} \sqrt [4]{c} \sqrt [4]{d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{d} x}{\sqrt [4]{c}}\right )}{\sqrt {2} \sqrt [4]{c} \sqrt [4]{d}}}{2 \sqrt {c}}\right )}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {b x}{d}-\frac {(b c-a d) \left (\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{c}-2 \sqrt [4]{d} x}{\sqrt [4]{d} \left (x^2-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{d}}+\frac {\sqrt {c}}{\sqrt {d}}\right )}dx}{2 \sqrt {2} \sqrt [4]{c} \sqrt [4]{d}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt [4]{d} x+\sqrt [4]{c}\right )}{\sqrt [4]{d} \left (x^2+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{d}}+\frac {\sqrt {c}}{\sqrt {d}}\right )}dx}{2 \sqrt {2} \sqrt [4]{c} \sqrt [4]{d}}}{2 \sqrt {c}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{d} x}{\sqrt [4]{c}}+1\right )}{\sqrt {2} \sqrt [4]{c} \sqrt [4]{d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{d} x}{\sqrt [4]{c}}\right )}{\sqrt {2} \sqrt [4]{c} \sqrt [4]{d}}}{2 \sqrt {c}}\right )}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {b x}{d}-\frac {(b c-a d) \left (\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{c}-2 \sqrt [4]{d} x}{x^2-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{d}}+\frac {\sqrt {c}}{\sqrt {d}}}dx}{2 \sqrt {2} \sqrt [4]{c} \sqrt {d}}+\frac {\int \frac {\sqrt {2} \sqrt [4]{d} x+\sqrt [4]{c}}{x^2+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{d}}+\frac {\sqrt {c}}{\sqrt {d}}}dx}{2 \sqrt [4]{c} \sqrt {d}}}{2 \sqrt {c}}+\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{d} x}{\sqrt [4]{c}}+1\right )}{\sqrt {2} \sqrt [4]{c} \sqrt [4]{d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{d} x}{\sqrt [4]{c}}\right )}{\sqrt {2} \sqrt [4]{c} \sqrt [4]{d}}}{2 \sqrt {c}}\right )}{d}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {b x}{d}-\frac {(b c-a d) \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{d} x}{\sqrt [4]{c}}+1\right )}{\sqrt {2} \sqrt [4]{c} \sqrt [4]{d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{d} x}{\sqrt [4]{c}}\right )}{\sqrt {2} \sqrt [4]{c} \sqrt [4]{d}}}{2 \sqrt {c}}+\frac {\frac {\log \left (\sqrt {2} \sqrt [4]{c} \sqrt [4]{d} x+\sqrt {c}+\sqrt {d} x^2\right )}{2 \sqrt {2} \sqrt [4]{c} \sqrt [4]{d}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{c} \sqrt [4]{d} x+\sqrt {c}+\sqrt {d} x^2\right )}{2 \sqrt {2} \sqrt [4]{c} \sqrt [4]{d}}}{2 \sqrt {c}}\right )}{d}\)

input
Int[(a + b*x^4)/(c + d*x^4),x]
 
output
(b*x)/d - ((b*c - a*d)*((-(ArcTan[1 - (Sqrt[2]*d^(1/4)*x)/c^(1/4)]/(Sqrt[2 
]*c^(1/4)*d^(1/4))) + ArcTan[1 + (Sqrt[2]*d^(1/4)*x)/c^(1/4)]/(Sqrt[2]*c^( 
1/4)*d^(1/4)))/(2*Sqrt[c]) + (-1/2*Log[Sqrt[c] - Sqrt[2]*c^(1/4)*d^(1/4)*x 
 + Sqrt[d]*x^2]/(Sqrt[2]*c^(1/4)*d^(1/4)) + Log[Sqrt[c] + Sqrt[2]*c^(1/4)* 
d^(1/4)*x + Sqrt[d]*x^2]/(2*Sqrt[2]*c^(1/4)*d^(1/4)))/(2*Sqrt[c])))/d
 

3.2.50.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 755
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2] 
], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*r)   Int[(r - s*x^2)/(a + b*x^4) 
, x], x] + Simp[1/(2*r)   Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{a, 
 b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] & 
& AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 913
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Si 
mp[d*x*((a + b*x^n)^(p + 1)/(b*(n*(p + 1) + 1))), x] - Simp[(a*d - b*c*(n*( 
p + 1) + 1))/(b*(n*(p + 1) + 1))   Int[(a + b*x^n)^p, x], x] /; FreeQ[{a, b 
, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && NeQ[n*(p + 1) + 1, 0]
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
3.2.50.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 4.32 (sec) , antiderivative size = 42, normalized size of antiderivative = 0.19

method result size
risch \(\frac {b x}{d}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (d \,\textit {\_Z}^{4}+c \right )}{\sum }\frac {\left (a d -b c \right ) \ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{3}}}{4 d^{2}}\) \(42\)
default \(\frac {b x}{d}+\frac {\left (a d -b c \right ) \left (\frac {c}{d}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x^{2}+\left (\frac {c}{d}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {c}{d}}}{x^{2}-\left (\frac {c}{d}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {c}{d}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {c}{d}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {c}{d}\right )^{\frac {1}{4}}}-1\right )\right )}{8 d c}\) \(120\)

input
int((b*x^4+a)/(d*x^4+c),x,method=_RETURNVERBOSE)
 
output
b*x/d+1/4/d^2*sum((a*d-b*c)/_R^3*ln(x-_R),_R=RootOf(_Z^4*d+c))
 
3.2.50.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.28 (sec) , antiderivative size = 560, normalized size of antiderivative = 2.51 \[ \int \frac {a+b x^4}{c+d x^4} \, dx=\frac {d \left (-\frac {b^{4} c^{4} - 4 \, a b^{3} c^{3} d + 6 \, a^{2} b^{2} c^{2} d^{2} - 4 \, a^{3} b c d^{3} + a^{4} d^{4}}{c^{3} d^{5}}\right )^{\frac {1}{4}} \log \left (c d \left (-\frac {b^{4} c^{4} - 4 \, a b^{3} c^{3} d + 6 \, a^{2} b^{2} c^{2} d^{2} - 4 \, a^{3} b c d^{3} + a^{4} d^{4}}{c^{3} d^{5}}\right )^{\frac {1}{4}} - {\left (b c - a d\right )} x\right ) + i \, d \left (-\frac {b^{4} c^{4} - 4 \, a b^{3} c^{3} d + 6 \, a^{2} b^{2} c^{2} d^{2} - 4 \, a^{3} b c d^{3} + a^{4} d^{4}}{c^{3} d^{5}}\right )^{\frac {1}{4}} \log \left (i \, c d \left (-\frac {b^{4} c^{4} - 4 \, a b^{3} c^{3} d + 6 \, a^{2} b^{2} c^{2} d^{2} - 4 \, a^{3} b c d^{3} + a^{4} d^{4}}{c^{3} d^{5}}\right )^{\frac {1}{4}} - {\left (b c - a d\right )} x\right ) - i \, d \left (-\frac {b^{4} c^{4} - 4 \, a b^{3} c^{3} d + 6 \, a^{2} b^{2} c^{2} d^{2} - 4 \, a^{3} b c d^{3} + a^{4} d^{4}}{c^{3} d^{5}}\right )^{\frac {1}{4}} \log \left (-i \, c d \left (-\frac {b^{4} c^{4} - 4 \, a b^{3} c^{3} d + 6 \, a^{2} b^{2} c^{2} d^{2} - 4 \, a^{3} b c d^{3} + a^{4} d^{4}}{c^{3} d^{5}}\right )^{\frac {1}{4}} - {\left (b c - a d\right )} x\right ) - d \left (-\frac {b^{4} c^{4} - 4 \, a b^{3} c^{3} d + 6 \, a^{2} b^{2} c^{2} d^{2} - 4 \, a^{3} b c d^{3} + a^{4} d^{4}}{c^{3} d^{5}}\right )^{\frac {1}{4}} \log \left (-c d \left (-\frac {b^{4} c^{4} - 4 \, a b^{3} c^{3} d + 6 \, a^{2} b^{2} c^{2} d^{2} - 4 \, a^{3} b c d^{3} + a^{4} d^{4}}{c^{3} d^{5}}\right )^{\frac {1}{4}} - {\left (b c - a d\right )} x\right ) + 4 \, b x}{4 \, d} \]

input
integrate((b*x^4+a)/(d*x^4+c),x, algorithm="fricas")
 
output
1/4*(d*(-(b^4*c^4 - 4*a*b^3*c^3*d + 6*a^2*b^2*c^2*d^2 - 4*a^3*b*c*d^3 + a^ 
4*d^4)/(c^3*d^5))^(1/4)*log(c*d*(-(b^4*c^4 - 4*a*b^3*c^3*d + 6*a^2*b^2*c^2 
*d^2 - 4*a^3*b*c*d^3 + a^4*d^4)/(c^3*d^5))^(1/4) - (b*c - a*d)*x) + I*d*(- 
(b^4*c^4 - 4*a*b^3*c^3*d + 6*a^2*b^2*c^2*d^2 - 4*a^3*b*c*d^3 + a^4*d^4)/(c 
^3*d^5))^(1/4)*log(I*c*d*(-(b^4*c^4 - 4*a*b^3*c^3*d + 6*a^2*b^2*c^2*d^2 - 
4*a^3*b*c*d^3 + a^4*d^4)/(c^3*d^5))^(1/4) - (b*c - a*d)*x) - I*d*(-(b^4*c^ 
4 - 4*a*b^3*c^3*d + 6*a^2*b^2*c^2*d^2 - 4*a^3*b*c*d^3 + a^4*d^4)/(c^3*d^5) 
)^(1/4)*log(-I*c*d*(-(b^4*c^4 - 4*a*b^3*c^3*d + 6*a^2*b^2*c^2*d^2 - 4*a^3* 
b*c*d^3 + a^4*d^4)/(c^3*d^5))^(1/4) - (b*c - a*d)*x) - d*(-(b^4*c^4 - 4*a* 
b^3*c^3*d + 6*a^2*b^2*c^2*d^2 - 4*a^3*b*c*d^3 + a^4*d^4)/(c^3*d^5))^(1/4)* 
log(-c*d*(-(b^4*c^4 - 4*a*b^3*c^3*d + 6*a^2*b^2*c^2*d^2 - 4*a^3*b*c*d^3 + 
a^4*d^4)/(c^3*d^5))^(1/4) - (b*c - a*d)*x) + 4*b*x)/d
 
3.2.50.6 Sympy [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.39 \[ \int \frac {a+b x^4}{c+d x^4} \, dx=\frac {b x}{d} + \operatorname {RootSum} {\left (256 t^{4} c^{3} d^{5} + a^{4} d^{4} - 4 a^{3} b c d^{3} + 6 a^{2} b^{2} c^{2} d^{2} - 4 a b^{3} c^{3} d + b^{4} c^{4}, \left ( t \mapsto t \log {\left (\frac {4 t c d}{a d - b c} + x \right )} \right )\right )} \]

input
integrate((b*x**4+a)/(d*x**4+c),x)
 
output
b*x/d + RootSum(256*_t**4*c**3*d**5 + a**4*d**4 - 4*a**3*b*c*d**3 + 6*a**2 
*b**2*c**2*d**2 - 4*a*b**3*c**3*d + b**4*c**4, Lambda(_t, _t*log(4*_t*c*d/ 
(a*d - b*c) + x)))
 
3.2.50.7 Maxima [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 212, normalized size of antiderivative = 0.95 \[ \int \frac {a+b x^4}{c+d x^4} \, dx=\frac {b x}{d} - \frac {\frac {2 \, \sqrt {2} {\left (b c - a d\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {d} x + \sqrt {2} c^{\frac {1}{4}} d^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {c} \sqrt {d}}}\right )}{\sqrt {c} \sqrt {\sqrt {c} \sqrt {d}}} + \frac {2 \, \sqrt {2} {\left (b c - a d\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {d} x - \sqrt {2} c^{\frac {1}{4}} d^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {c} \sqrt {d}}}\right )}{\sqrt {c} \sqrt {\sqrt {c} \sqrt {d}}} + \frac {\sqrt {2} {\left (b c - a d\right )} \log \left (\sqrt {d} x^{2} + \sqrt {2} c^{\frac {1}{4}} d^{\frac {1}{4}} x + \sqrt {c}\right )}{c^{\frac {3}{4}} d^{\frac {1}{4}}} - \frac {\sqrt {2} {\left (b c - a d\right )} \log \left (\sqrt {d} x^{2} - \sqrt {2} c^{\frac {1}{4}} d^{\frac {1}{4}} x + \sqrt {c}\right )}{c^{\frac {3}{4}} d^{\frac {1}{4}}}}{8 \, d} \]

input
integrate((b*x^4+a)/(d*x^4+c),x, algorithm="maxima")
 
output
b*x/d - 1/8*(2*sqrt(2)*(b*c - a*d)*arctan(1/2*sqrt(2)*(2*sqrt(d)*x + sqrt( 
2)*c^(1/4)*d^(1/4))/sqrt(sqrt(c)*sqrt(d)))/(sqrt(c)*sqrt(sqrt(c)*sqrt(d))) 
 + 2*sqrt(2)*(b*c - a*d)*arctan(1/2*sqrt(2)*(2*sqrt(d)*x - sqrt(2)*c^(1/4) 
*d^(1/4))/sqrt(sqrt(c)*sqrt(d)))/(sqrt(c)*sqrt(sqrt(c)*sqrt(d))) + sqrt(2) 
*(b*c - a*d)*log(sqrt(d)*x^2 + sqrt(2)*c^(1/4)*d^(1/4)*x + sqrt(c))/(c^(3/ 
4)*d^(1/4)) - sqrt(2)*(b*c - a*d)*log(sqrt(d)*x^2 - sqrt(2)*c^(1/4)*d^(1/4 
)*x + sqrt(c))/(c^(3/4)*d^(1/4)))/d
 
3.2.50.8 Giac [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 245, normalized size of antiderivative = 1.10 \[ \int \frac {a+b x^4}{c+d x^4} \, dx=\frac {b x}{d} - \frac {\sqrt {2} {\left (\left (c d^{3}\right )^{\frac {1}{4}} b c - \left (c d^{3}\right )^{\frac {1}{4}} a d\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x + \sqrt {2} \left (\frac {c}{d}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {c}{d}\right )^{\frac {1}{4}}}\right )}{4 \, c d^{2}} - \frac {\sqrt {2} {\left (\left (c d^{3}\right )^{\frac {1}{4}} b c - \left (c d^{3}\right )^{\frac {1}{4}} a d\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x - \sqrt {2} \left (\frac {c}{d}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {c}{d}\right )^{\frac {1}{4}}}\right )}{4 \, c d^{2}} - \frac {\sqrt {2} {\left (\left (c d^{3}\right )^{\frac {1}{4}} b c - \left (c d^{3}\right )^{\frac {1}{4}} a d\right )} \log \left (x^{2} + \sqrt {2} x \left (\frac {c}{d}\right )^{\frac {1}{4}} + \sqrt {\frac {c}{d}}\right )}{8 \, c d^{2}} + \frac {\sqrt {2} {\left (\left (c d^{3}\right )^{\frac {1}{4}} b c - \left (c d^{3}\right )^{\frac {1}{4}} a d\right )} \log \left (x^{2} - \sqrt {2} x \left (\frac {c}{d}\right )^{\frac {1}{4}} + \sqrt {\frac {c}{d}}\right )}{8 \, c d^{2}} \]

input
integrate((b*x^4+a)/(d*x^4+c),x, algorithm="giac")
 
output
b*x/d - 1/4*sqrt(2)*((c*d^3)^(1/4)*b*c - (c*d^3)^(1/4)*a*d)*arctan(1/2*sqr 
t(2)*(2*x + sqrt(2)*(c/d)^(1/4))/(c/d)^(1/4))/(c*d^2) - 1/4*sqrt(2)*((c*d^ 
3)^(1/4)*b*c - (c*d^3)^(1/4)*a*d)*arctan(1/2*sqrt(2)*(2*x - sqrt(2)*(c/d)^ 
(1/4))/(c/d)^(1/4))/(c*d^2) - 1/8*sqrt(2)*((c*d^3)^(1/4)*b*c - (c*d^3)^(1/ 
4)*a*d)*log(x^2 + sqrt(2)*x*(c/d)^(1/4) + sqrt(c/d))/(c*d^2) + 1/8*sqrt(2) 
*((c*d^3)^(1/4)*b*c - (c*d^3)^(1/4)*a*d)*log(x^2 - sqrt(2)*x*(c/d)^(1/4) + 
 sqrt(c/d))/(c*d^2)
 
3.2.50.9 Mupad [B] (verification not implemented)

Time = 0.23 (sec) , antiderivative size = 720, normalized size of antiderivative = 3.23 \[ \int \frac {a+b x^4}{c+d x^4} \, dx=\frac {b\,x}{d}-\frac {\mathrm {atan}\left (\frac {\frac {\left (x\,\left (4\,a^2\,d^3-8\,a\,b\,c\,d^2+4\,b^2\,c^2\,d\right )-\frac {\left (16\,b\,c^2\,d^2-16\,a\,c\,d^3\right )\,\left (a\,d-b\,c\right )}{4\,{\left (-c\right )}^{3/4}\,d^{5/4}}\right )\,\left (a\,d-b\,c\right )\,1{}\mathrm {i}}{4\,{\left (-c\right )}^{3/4}\,d^{5/4}}+\frac {\left (x\,\left (4\,a^2\,d^3-8\,a\,b\,c\,d^2+4\,b^2\,c^2\,d\right )+\frac {\left (16\,b\,c^2\,d^2-16\,a\,c\,d^3\right )\,\left (a\,d-b\,c\right )}{4\,{\left (-c\right )}^{3/4}\,d^{5/4}}\right )\,\left (a\,d-b\,c\right )\,1{}\mathrm {i}}{4\,{\left (-c\right )}^{3/4}\,d^{5/4}}}{\frac {\left (x\,\left (4\,a^2\,d^3-8\,a\,b\,c\,d^2+4\,b^2\,c^2\,d\right )-\frac {\left (16\,b\,c^2\,d^2-16\,a\,c\,d^3\right )\,\left (a\,d-b\,c\right )}{4\,{\left (-c\right )}^{3/4}\,d^{5/4}}\right )\,\left (a\,d-b\,c\right )}{4\,{\left (-c\right )}^{3/4}\,d^{5/4}}-\frac {\left (x\,\left (4\,a^2\,d^3-8\,a\,b\,c\,d^2+4\,b^2\,c^2\,d\right )+\frac {\left (16\,b\,c^2\,d^2-16\,a\,c\,d^3\right )\,\left (a\,d-b\,c\right )}{4\,{\left (-c\right )}^{3/4}\,d^{5/4}}\right )\,\left (a\,d-b\,c\right )}{4\,{\left (-c\right )}^{3/4}\,d^{5/4}}}\right )\,\left (a\,d-b\,c\right )\,1{}\mathrm {i}}{2\,{\left (-c\right )}^{3/4}\,d^{5/4}}-\frac {\mathrm {atan}\left (\frac {\frac {\left (x\,\left (4\,a^2\,d^3-8\,a\,b\,c\,d^2+4\,b^2\,c^2\,d\right )-\frac {\left (16\,b\,c^2\,d^2-16\,a\,c\,d^3\right )\,\left (a\,d-b\,c\right )\,1{}\mathrm {i}}{4\,{\left (-c\right )}^{3/4}\,d^{5/4}}\right )\,\left (a\,d-b\,c\right )}{4\,{\left (-c\right )}^{3/4}\,d^{5/4}}+\frac {\left (x\,\left (4\,a^2\,d^3-8\,a\,b\,c\,d^2+4\,b^2\,c^2\,d\right )+\frac {\left (16\,b\,c^2\,d^2-16\,a\,c\,d^3\right )\,\left (a\,d-b\,c\right )\,1{}\mathrm {i}}{4\,{\left (-c\right )}^{3/4}\,d^{5/4}}\right )\,\left (a\,d-b\,c\right )}{4\,{\left (-c\right )}^{3/4}\,d^{5/4}}}{\frac {\left (x\,\left (4\,a^2\,d^3-8\,a\,b\,c\,d^2+4\,b^2\,c^2\,d\right )-\frac {\left (16\,b\,c^2\,d^2-16\,a\,c\,d^3\right )\,\left (a\,d-b\,c\right )\,1{}\mathrm {i}}{4\,{\left (-c\right )}^{3/4}\,d^{5/4}}\right )\,\left (a\,d-b\,c\right )\,1{}\mathrm {i}}{4\,{\left (-c\right )}^{3/4}\,d^{5/4}}-\frac {\left (x\,\left (4\,a^2\,d^3-8\,a\,b\,c\,d^2+4\,b^2\,c^2\,d\right )+\frac {\left (16\,b\,c^2\,d^2-16\,a\,c\,d^3\right )\,\left (a\,d-b\,c\right )\,1{}\mathrm {i}}{4\,{\left (-c\right )}^{3/4}\,d^{5/4}}\right )\,\left (a\,d-b\,c\right )\,1{}\mathrm {i}}{4\,{\left (-c\right )}^{3/4}\,d^{5/4}}}\right )\,\left (a\,d-b\,c\right )}{2\,{\left (-c\right )}^{3/4}\,d^{5/4}} \]

input
int((a + b*x^4)/(c + d*x^4),x)
 
output
(b*x)/d - (atan((((x*(4*a^2*d^3 + 4*b^2*c^2*d - 8*a*b*c*d^2) - ((16*b*c^2* 
d^2 - 16*a*c*d^3)*(a*d - b*c))/(4*(-c)^(3/4)*d^(5/4)))*(a*d - b*c)*1i)/(4* 
(-c)^(3/4)*d^(5/4)) + ((x*(4*a^2*d^3 + 4*b^2*c^2*d - 8*a*b*c*d^2) + ((16*b 
*c^2*d^2 - 16*a*c*d^3)*(a*d - b*c))/(4*(-c)^(3/4)*d^(5/4)))*(a*d - b*c)*1i 
)/(4*(-c)^(3/4)*d^(5/4)))/(((x*(4*a^2*d^3 + 4*b^2*c^2*d - 8*a*b*c*d^2) - ( 
(16*b*c^2*d^2 - 16*a*c*d^3)*(a*d - b*c))/(4*(-c)^(3/4)*d^(5/4)))*(a*d - b* 
c))/(4*(-c)^(3/4)*d^(5/4)) - ((x*(4*a^2*d^3 + 4*b^2*c^2*d - 8*a*b*c*d^2) + 
 ((16*b*c^2*d^2 - 16*a*c*d^3)*(a*d - b*c))/(4*(-c)^(3/4)*d^(5/4)))*(a*d - 
b*c))/(4*(-c)^(3/4)*d^(5/4))))*(a*d - b*c)*1i)/(2*(-c)^(3/4)*d^(5/4)) - (a 
tan((((x*(4*a^2*d^3 + 4*b^2*c^2*d - 8*a*b*c*d^2) - ((16*b*c^2*d^2 - 16*a*c 
*d^3)*(a*d - b*c)*1i)/(4*(-c)^(3/4)*d^(5/4)))*(a*d - b*c))/(4*(-c)^(3/4)*d 
^(5/4)) + ((x*(4*a^2*d^3 + 4*b^2*c^2*d - 8*a*b*c*d^2) + ((16*b*c^2*d^2 - 1 
6*a*c*d^3)*(a*d - b*c)*1i)/(4*(-c)^(3/4)*d^(5/4)))*(a*d - b*c))/(4*(-c)^(3 
/4)*d^(5/4)))/(((x*(4*a^2*d^3 + 4*b^2*c^2*d - 8*a*b*c*d^2) - ((16*b*c^2*d^ 
2 - 16*a*c*d^3)*(a*d - b*c)*1i)/(4*(-c)^(3/4)*d^(5/4)))*(a*d - b*c)*1i)/(4 
*(-c)^(3/4)*d^(5/4)) - ((x*(4*a^2*d^3 + 4*b^2*c^2*d - 8*a*b*c*d^2) + ((16* 
b*c^2*d^2 - 16*a*c*d^3)*(a*d - b*c)*1i)/(4*(-c)^(3/4)*d^(5/4)))*(a*d - b*c 
)*1i)/(4*(-c)^(3/4)*d^(5/4))))*(a*d - b*c))/(2*(-c)^(3/4)*d^(5/4))